Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38250877

RESUMO

Foot-and-mouth disease (FMD) vaccines are currently the most powerful protective and preventive measures used to control FMD. In this study, the chimeric vaccine strain containing antigenic epitopes from the FMD virus serotype A, which belongs to the ASIA topotype, was produced and evaluated. The chimeric vaccine strains contain sea-97/G1 (VP4, VP2, VP3) and A22 Iraq (VP1) or G-VII (VP1) for use in FMD vaccines in Asia. The 50% protective dose was determined in mice. Vaccinated mice were challenged with three different type A viruses (Sea-97/G1, Sea-97/G2, G-VII clade) seven days post-vaccination (dpv), and mice that received the vaccine candidates were protected against the three viruses. The protective capability of one of the vaccine candidates was evaluated in pigs. Vaccinated pigs were challenged with three different type A viruses (Sea-97/G1, Sea-97/G2, G-VII clade) at 28 dpv, and pigs that received the vaccine candidate were protected against the three viruses. The results showed that this vaccine candidate, which was designed to provide protection against FMD in Asia, efficiently protected pigs against virus challenge and thus has potential as a broad-spectrum vaccine for various epidemic FMD viruses.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37632203

RESUMO

Rare but consistent reports of abscopal remission in patients challenge the notion that radiotherapy (RT) is a local treatment; radiation-induced cancer cell death can trigger activation and recruitment of dendritic cells to the primary tumor site, which subsequently initiates systemic immune responses against metastatic lesions. Although this abscopal effect was initially considered an anomaly, combining RT with immune checkpoint inhibitor therapies has been shown to greatly improve the incidence of abscopal responses via modulation of the immunosuppressive tumor microenvironment. Preclinical studies have demonstrated that nanomaterials can further improve the reliability and potency of the abscopal effect for various different types of cancer by (1) altering the cell death process to be more immunogenic, (2) facilitating the capture and transfer of tumor antigens from the site of cancer cell death to antigen-presenting cells, and (3) co-delivering immune checkpoint inhibitors along with radio-enhancing agents. Several unanswered questions remain concerning the exact mechanisms of action for nanomaterial-enhanced RT and for its combination with immune checkpoint inhibition and other immunostimulatory treatments in clinically relevant settings. The purpose of this article is to summarize key recent developments in this field and also highlight knowledge gaps that exist in this field. An improved mechanistic understanding will be critical for clinical translation of nanomaterials for advanced radio-immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Reprodutibilidade dos Testes , Imunoterapia , Neoplasias/radioterapia , Nanotecnologia , Nanoestruturas/uso terapêutico , Microambiente Tumoral
3.
Vaccines (Basel) ; 11(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37766163

RESUMO

Foot-and-mouth disease (FMD) is a fatal contagious viral disease that affects cloven-hoofed animals and causes severe economic damage at the national level. There are seven serotypes of the causative foot-and-mouth disease virus (FMDV), and type O is responsible for serious outbreaks and shows a high incidence. Recently, the Cathay, Southeast Asia (SEA), and ME-SA (Middle East-South Asia) topotypes of type O have been found to frequently occur in Asia. Thus, it is necessary to develop candidate vaccines that afford protection against these three different topotypes. In this study, an experimental FMD vaccine was produced using a recombinant virus (TWN-JC) with the JC epitope (VP1 140-160 sequence of the O/SKR/Jincheon/2014) between amino acid 152 and 153 of VP1 in TWN-R. Immunization with this novel vaccine candidate was found to effectively protect mice against challenge with the three different topotype viruses. Neutralizing antibody titers were considerably higher after a second vaccination. The serological differences between the topotype strains were identified in guinea pigs and swine. In conclusion, a significant serological difference was observed at 56 days post-vaccination between animals that received the TWN-JC vaccine candidate and those that received the positive control virus (TWN-R). The TWN-JC vaccine candidate induced IFNγ and IL-12B.

4.
Biomater Sci ; 11(18): 6311-6324, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552121

RESUMO

Photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA) prodrug is a clinically tried and proven treatment modality for surface-level lesions. However, its use for deep-seated tumors has been limited due to the poor penetration depth of visible light needed to activate the photosensitizer protoporphyrin IX (PPIX), which is produced from ALA metabolism. Herein, we report the usage of poly(ethylene glycol-b-lactic acid) (PEG-PLA)-encapsulated calcium tungstate (CaWO4, CWO for short) nanoparticles (PEG-PLA/CWO NPs) as energy transducers for X-ray-activated PDT using ALA. Owing to the spectral overlap between radioluminescence afforded by the CWO core and the absorbance of PPIX, these NPs can serve as an in situ visible light activation source during radiotherapy (RT), thereby mitigating the limitation of penetration depth. We demonstrate that this effect is observed across different cell lines with varying radio-sensitivity. Importantly, both PPIX and PEG-PLA/CWO NPs exhibit no significant toxicities at therapeutic doses in the absence of radiation. To assess the efficacy of this approach, we conducted a study using a syngeneic mouse model subcutaneously implanted with inherently radio-resistant 4T1 tumors. The results show a significantly improved prognosis compared to conventional RT, even with as few as 2 fractions of 4 Gy X-rays. Taken together, these results suggest that PEG-PLA/CWO NPs are promising agents for application of ALA-PDT in deep-seated tumors, thereby significantly expanding the utility of the already established treatment strategy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Pró-Fármacos , Animais , Camundongos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
5.
Vaccines (Basel) ; 11(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36851149

RESUMO

Foot-and-mouth disease (FMD) type O includes 11 genetic topotypes. The Southeast Asia (SEA), Middle East-South Asia (ME-SA), and Cathay topotypes belong to FMD type O and occur frequently in Asia. Therefore, it is necessary to develop a potent vaccine strain with a broad antigenic coverage in order to provide complete protection against these three topotypes. In this study, an experimental vaccine was produced using chimeric vaccine strains (JC-VP1 or PA2-VP1) that contained VP4, VP2, and VP3 of the ME-SA topotype (O Manisa) and VP1 of the SEA topotype (Mya98 lineage; O/SKR/Jincheon/2014) or ME-SA topotype (PanAsia2 lineage; O/PAK/44). Mice were immunized with the experimental vaccines, and they were fully protected against the three topotypes. The neutralizing antibody titers of PA2-VP1 were significantly higher than those of JC-VP1 in the early vaccination phase in pigs. Here, we confirmed complete protection in pigs vaccinated with JC-VP1 or PA2-VP1, when challenged against the SEA (O/SKR/Jincheon/2014), ME-SA (O/SKR/Boeun/2017) and Cathay (O/Taiwan/97) topotype viruses, with moderately higher protection provided by PA2-VP1 than by JC-VP1.

6.
J Cerebrovasc Endovasc Neurosurg ; 25(2): 203-207, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36266782

RESUMO

A giant thrombosed extracranial internal carotid artery aneurysm (ECCA) is extremely rare and its treatment is challenging. Despite the advance of endovascular technique, open surgery is still considered a first-line treatment in giant thrombosed ECCA. We describe a case of giant thrombosed ECCA which was successfully treated by aneurysmectomy and graft interposition with the technical details.

7.
Vaccines (Basel) ; 12(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276669

RESUMO

To analyze the relationship between homologous and heterologous serological titers of immunized pigs and their protection statuses against FMD virus challenges, in the present study, the correlation between the virus neutralization titers at 21 and 28 dpv and the protection statuses at 28 dpv against challenge with FMD virus was analyzed using data sets comprising five different combinations of homologous or heterologous challenge experiments in pigs vaccinated with type O (n = 96), A (n = 69), and Asia 1 (n = 74). As a result, the experiments were divided into three groups (21D-1, 21D-2, and 21D-3) in the 21-dpv model and two groups (28D-1 and 28D-2) in the 28-dpv model. Each response curve of groups 21D-1 and 21D-2 in the 21-dpv model was very similar to each curve of groups 28D-1 and 28D-2 in the 28-dpv model, respectively, even though there was an exceptional extra group (21D-3) in the 21-dpv model. The average titers estimating 0.75 probability of protection ranged from 1.06 to 1.62 log10 in the 21-dpv model and from 1.26 to 1.64 log10 in the 28-dpv model. In summary, we demonstrated that the serological method is useful for predicting the homologous and heterologous protection statuses of vaccinated pigs.

8.
Front Immunol ; 13: 1020262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248821

RESUMO

Foot-and-mouth disease virus (FMDV) is a single-stranded, positive-sense RNA virus containing at least 13 proteins. Many of these proteins show immune modulation capabilities. As a non-structural protein of the FMDV, 2B is involved in the rearrangement of the host cell membranes and the disruption of the host secretory pathway as a viroporin. Previous studies have also shown that FMDV 2B plays a role in the modulation of host type-I interferon (IFN) responses through the inhibition of expression of RIG-I and MDA5, key cytosolic sensors of the type-I IFN signaling. However, the exact molecular mechanism is poorly understood. Here, we demonstrated that FMDV 2B modulates host IFN signal pathway by the degradation of RIG-I and MDA5. FMDV 2B targeted the RIG-I for ubiquitination and proteasomal degradation by recruiting E3 ubiquitin ligase ring finger protein 125 (RNF125) and also targeted MDA5 for apoptosis-induced caspase-3- and caspase-8-dependent degradation. Ultimately, FMDV 2B significantly inhibited RNA virus-induced IFN-ß production. Importantly, we identified that the C-terminal amino acids 126-154 of FMDV 2B are essential for 2B-mediated degradation of the RIG-I and MDA5. Collectively, these results provide a clearer understanding of the specific molecular mechanisms used by FMDV 2B to inhibit the IFN responses and a rational approach to virus attenuation for future vaccine development.


Assuntos
Vírus da Febre Aftosa , Interferon Tipo I , Aminoácidos/metabolismo , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Viroporinas
9.
Front Microbiol ; 12: 737031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867853

RESUMO

3C protease (3Cpro), a chymotrypsin-like cysteine protease encoded by the foot-and-mouth disease virus (FMDV), plays an essential role in processing the FMDV P1 polyprotein into individual viral capsid proteins in FMDV replication. Previously, it has been shown that 3Cpro is involved in the blockage of the host type-I interferon (IFN) responses by FMDV. However, the underlying mechanisms are poorly understood. Here, we demonstrated that the protease activity of 3Cpro contributed to the degradation of RIG-I and MDA5, key cytosolic sensors of the type-I IFN signaling cascade in proteasome, lysosome and caspase-independent manner. And also, we examined the degradation ability on RIG-I and MDA5 of wild-type FMDV 3Cpro and FMDV 3Cpro C142T mutant which is known to significantly alter the enzymatic activity of 3Cpro. The results showed that the FMDV 3Cpro C142T mutant dramatically reduce the degradation of RIG-I and MDA5 due to weakened protease activity. Thus, the protease activity of FMDV 3Cpro governs its RIG-I and MDA5 degradation ability and subsequent negative regulation of the type-I IFN signaling. Importantly, FMD viruses harboring 3Cpro C142T mutant showed the moderate attenuation of FMDV in a pig model. In conclusion, our results indicate that a novel mechanism evolved by FMDV 3Cpro to counteract host type-I IFN responses and a rational approach to virus attenuation that could be utilized for future vaccine development.

10.
Vaccines (Basel) ; 9(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34696199

RESUMO

Foot-and-mouth disease (FMD) is a notifiable contagious disease of cloven-hoofed mammals. A high potency vaccine that stimulates the host immune response is the foremost strategy used to prevent disease persistence in endemic regions. FMD vaccines comprise inactivated virus antigens whose immunogenicity is potentiated by immunogenic adjuvants. Oil-based adjuvants have clear advantages over traditional adjuvant vaccines; however, there is potential to develop novel adjuvants to increase the potency of FMD vaccines. Thus, we aimed to evaluate the efficacy of a novel water-in-oil emulsion, called CAvant®SOE, as a novel vaccine adjuvant for use with inactivated FMD vaccines. In this study, we found that inactivated A22 Iraq virus plus CAvant®SOE (iA22 Iraq-CAvant®SOE) induced effective antigen-specific humoral (IgG, IgG1, and IgG2a) and cell-mediated immune responses (IFN-γ and IL-4) in mice. Immunization of pigs with a single dose of iA22 Iraq-CAvant®SOE also elicited effective protection, with no detectable clinical symptoms against challenge with heterologous A/SKR/GP/2018 FMDV. Levels of protection are strongly in line with vaccine-induced neutralizing antibody titers. Collectively, these results indicate that CAvant®SOE-adjuvanted vaccine is a promising candidate for control of FMD in pigs.

11.
NPJ Vaccines ; 6(1): 42, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772029

RESUMO

Current foot-and-mouth disease (FMD) vaccines have significant limitations, including side effects due to oil emulsions at the vaccination site, a narrow spectrum of protective efficacy, and incomplete host defenses mediated by humoral immunity alone. To overcome these limitations, new FMD vaccines must ensure improved safety with non-oil-based adjuvants, a broad spectrum of host defenses within/between serotypes, and the simultaneous induction of cellular and humoral immunity. We designed a novel, immune-potent, recombinant protein rpHSP70-AD that induces robust cellular immunity and elicits a broad spectrum of host defenses against FMD virus (FMDV) infections. We demonstrated that an oil emulsion-free vaccine containing rpHSP70-AD mediates early, mid-term, and long-term immunity and drives potent host protection against FMDV type O and A, suggesting its potential as an FMD vaccine adjuvant in mice and pigs. These results suggest a key strategy for establishing next-generation FMD vaccines, including novel adjuvants.

12.
Vet Microbiol ; 253: 108975, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418393

RESUMO

The type Asia1 genetic group(G)-V lineage foot-and-mouth disease (FMD) virus was identified in the East-Asian region in 2009. To date, only Shamir has been used as a standard vaccine strain worldwide for type Asia1. To prevent type Asia1 FMD in eastern Asia, two vaccine strains (ASM-R: G-V and ASM-SM: G-V/Shamir fusion) were developed and tested against type Asia1 virus strains. After immunization with the two experimental vaccines, the ASM-SM strain showed a higher level of protection against Shamir virus in mice. Additional immunogenicity tests were carried out in cattle and pigs, revealing sufficient antibody production capable of protecting the animals against the viral challenge. In cattle, the immune response started just 2 weeks after vaccination. Immunogenicity was lower in pigs, but antibody production was greatly increased to a high level after a second vaccination round. In particular, herein, 60 % and 100 % of the vaccinated pigs challenged with the Asia1 Shamir virus were determined to be clinically protected after one and two vaccination rounds with ASM-R, respectively. Pigs vaccinated twice produced sufficient antibody titers with low virus shedding for short time. Moreover, ASM-SM single-vaccinated pigs showed 100 % protection when challenged with the Asia1 Shamir virus. In summary, the vaccine strain ASM-SM designed for the defense of the Asian region efficiently granted protection to pigs against the typical Asia1 virus, Shamir.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Bovinos/prevenção & controle , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/genética , Animais , Anticorpos Antivirais/imunologia , Bovinos , Doenças dos Bovinos/virologia , Ásia Oriental , Feminino , Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos C57BL , Suínos , Doenças dos Suínos/virologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Eliminação de Partículas Virais
13.
J Vet Sci ; 21(5): e74, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016020

RESUMO

BACKGROUND: The quality of a vaccine depends strongly on the effects of the adjuvants applied simultaneously with the antigen in the vaccine. The adjuvants enhance the protective effect of the vaccine against a viral challenge. Conversely, oil-type adjuvants leave oil residue inside the bodies of the injected animals that can produce a local reaction in the muscle. The long-term immunogenicity of mice after vaccination was examined. ISA206 or ISA15 oil adjuvants maintained the best immunity, protective capability, and safety among the oil adjuvants in the experimental group. OBJECTIVES: This study screened the adjuvant composites aimed at enhancing foot-and-mouth disease (FMD) immunity. The C-type lectin or toll-like receptor (TLR) agonist showed the most improved protection rate. METHODS: Experimental vaccines were fabricated by mixing various known oil adjuvants and composites that can act as immunogenic adjuvants (gel, saponin, and other components) and examined the enhancement effect on the vaccine. RESULTS: The water in oil (W/O) and water in oil in water (W/O/W) adjuvants showed better immune effects than the oil in water (O/W) adjuvants, which have a small volume of oil component. The W/O type left the largest amount of oil residue, followed by W/O/W and O/W types. In the mouse model, intramuscular inoculation showed a better protection rate than subcutaneous inoculation. Moreover, the protective effect was particularly weak in the case of inoculation in fatty tissue. The initial immune reaction and persistence of long-term immunity were also confirmed in an immune reaction on pigs. CONCLUSIONS: The new experimental vaccine with immunostimulants produces improved immune responses and safety in pigs than general oil-adjuvanted vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinação/veterinária , Vacinas Virais/farmacologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Febre Aftosa/imunologia , Febre Aftosa/virologia , Camundongos , Camundongos Endogâmicos C57BL , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas Virais/imunologia
14.
Adv Healthc Mater ; 9(19): e2000876, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32902150

RESUMO

Although hydrogels are promising transdermal patches, they face spatiotemporal problems related to controlled drug release. From the "spatio" perspective, hydrogels are not malleable, therefore they do not fully contact curved skin, such as that found on the nose and fingers. From the "temporal" perspective, the internal network of a hydrogel retards cargo release. Herein, a malleable and rapid-cargo-releasing poly(vinyl alcohol)-borax hydrogel that embeds freely mobile poly(hydroxyethyl methacrylate) (PHEMA) micelles is prepared. The in situ polymerization of PHEMA within the matrix produces large compound micelle particles that are not bound by the matrix. The micelles act as expellers by sweeping out cargo upon exposure to wet conditions through a concentration gradient. The hydrogel embedded with the micellar cargo-expellers delivers a 25-fold larger 3-min release quantity of Nile Red (a model cargo) than the control hydrogel. The particles absorb mechanical shocks and the dynamic borate-diol bonds engender the hydrogel with self-healing properties, which results in a hydrogel that tightly contacts highly curved skin. Moreover, the hydrogel shows no toxicity in in vivo and skin irritation tests. This malleable hydrogel will inspire novel prompt skin-patch systems for pharmaceutical and cosmetics purposes.


Assuntos
Hidrogéis , Micelas , Liberação Controlada de Fármacos , Poli-Hidroxietil Metacrilato , Adesivo Transdérmico
15.
Vet Microbiol ; 248: 108802, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32827925

RESUMO

Newly developed vaccine strains to prevent foot-and-mouth disease caused by the emerging serotype Asia1 virus were evaluated. To protect against the group (G)-VIII strain, which occurred recently, we produced an infectious cDNA clone of Asia1 Shamir cDNA (Asia1 Shamir-R). In addition, by adding a site 1 epitope of VP1 of the G-VIII lineage virus to this virus, we produced a new virus (Sham GVIII- EPI), and another virus(Sham GVIII-VP1) was replaced with that of G-VIII lineage in the VP1 region of Shamir. Test vaccines were produced using these three types of vaccine virus, and their immunogenicity and protection capabilities were evaluated in mice. Immunized mice were challenged with the Asia1 Shamir or G-VIII virus, and the results show that all the vaccines have similar protective effects. As they showed similar antigenicity, we chose the Shamir-R vaccine. Pigs maintained relatively high neutralizing antibody levels against homologous viruses of the Shamir and G-VII or G-VIII lineage three to four weeks after immunization. However, they formed relatively low levels of antibodies to G-IV and G-V viruses. In conclusion, we produced a vaccine candidate capable of protection against the G-VIII virus in the vaccine experiment for the type Asia1 serotype vaccine. This Shamir-R vaccine virus was found to protect against the viruses of the Asia1 genotype G-VII and G-VIII lineages, which occurred recently in Asia.


Assuntos
Anticorpos Neutralizantes/sangue , Antígenos Virais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Animais , Ásia , Proteínas do Capsídeo/imunologia , Epitopos/imunologia , Feminino , Febre Aftosa/imunologia , Vírus da Febre Aftosa/classificação , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos C57BL , Sorogrupo , Suínos , Doenças dos Suínos/virologia , Vacinação
16.
J Med Food ; 23(4): 459-464, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32109191

RESUMO

This study was to compare the anticolitis activity of fresh Saengshik (FSS) with heated Saengshik (HSS) with dextran sulfate sodium (DSS)-induced experimental colitis mouse model. Both FSS- and HSS-fed colitis mice exhibited the effects of the increase in the body weight, the alleviation in the colon shortening, and the reduction of the ratio of colon weight to length. However, FSS-fed colitis mice showed a much more significant decrease in DSS-induced tissue damage by mucosal edema and crypt deficiency than did HSS-fed ones. Besides, FSS contributed to decreasing the serum levels of proinflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and inhibiting the colonic mRNA expressions of these cytokines in colitis tissue of the mice. FSS also resulted in the lower colonic mRNA expression level of inflammation-related inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colitis mice than did HSS. Overall results confirmed Saengshik, especially FSS, inhibits more effectively against DSS-induced inflammation reaction in colitis mice than HSS.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Animais , Peso Corporal , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , República da Coreia , Fator de Necrose Tumoral alfa/metabolismo
17.
Can J Gastroenterol Hepatol ; 2020: 8812634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425805

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has been a major cause of a chronic liver disease over recent decades and increasing worldwide in parallel with the remarkable growth of obesity. In the present study, we investigate the ameliorative effects of PCM, a combination of Diospyros kaki fruit and Citrus unshiu peel mixture, on high-fat diet- (HFD-) induced NAFLD and clarify the potential mechanisms. PCM in HFD-fed mice was orally administered at a dose of 50 or 100 mg/kg subsequently for 2 months. Thereafter, lipid metabolism parameters and fat synthesis-related genes in the mouse liver were evaluated. Subsequently, body weight changes, liver weight, serum liver function and lipid profiles, and liver pathology were examined, and the relative levels of fatty acid synthesis and ß-oxidation gene expression were evaluated by western blot. Serum AST, ALT, and TG levels in the HFD control mice were significantly higher than those of normal mice. Compared with HFD control mice, PCM supplementation increased phosphorylation of AMP-activated protein kinase (AMPK). Peroxisome proliferator-activated receptor (PPAR) α was significantly increased by PCM administration. Continuously, the activation of PPARα significantly elevated carnitine palmitoyltransferase 1 (CPT-1), a key enzyme in fatty acid ß-oxidation, and mitochondrial uncoupling protein 2 (UCP-2), thermogenic regulatory genes, in PCM-treated mice compared with those of HFD control mice. Moreover, PCM inhibits lipogenesis and cholesterol synthesis via suppression of sterol regulatory element binding protein-1 (SREBP-1) and SREBP-2 and its target genes such as acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Taken together, these effects were mediated through activation of AMPK. In the conclusion, PCM improved liver damage in HFD-fed mice and attenuated NAFLD by the activation of PPARα and the inhibition of SREBPs expression via AMPK-dependent pathways.


Assuntos
Citrus , Diospyros , Hepatopatia Gordurosa não Alcoólica , Animais , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
18.
Vaccine ; 38(5): 1120-1128, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31810782

RESUMO

Efforts are required to develop foot-and-mouth disease (FMD) vaccines in Asia that can respond to the type O outbreaks that have continued with the devastating damage since 2010. It is necessary to develop vaccine strains that can provide protection against the ME-SA topotype, which has tended to spread into neighboring areas, and the frequent SEA topotype outbreaks. To this end, this study aimed to develop a FMD vaccine utilizing O PanAsia-2 that is able to provide broad protection against ME-SA as the vaccine strain, with a focus on the O/Jincheon/SKR/2014 virus (SEA topotype), the outbreaks of which have persisted in spite of the enforcement of FMD vaccination. The virus neutralizing antibody (VN) titer to the ME-SA topotype (especially, Ind2001 lineage) virus in pigs was the highest, followed by SEA, while the VN titers to the Cathay and EURO-SA topotypes were similar. In the O/Jincheon/SKR/2014 virus challenge test, all pigs were protected against the virus, and almost no virus shedding was detected after the virus challenge. In the immunization test performed on cattle and pigs, antibodies with sufficient protective activity were produced in cattle two weeks after the first immunization, and pigs exhibited lower immunity compared to cattle. However, immunity was improved enough in pigs to provide protection against the virus challenge after the second immunization, with a significant increase in antibody production.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/imunologia , Imunogenicidade da Vacina , Suínos , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia
19.
Virol J ; 16(1): 156, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842907

RESUMO

BACKGROUND: The foot-and-mouth disease (FMD) virus is classified into seven serotypes, of which the South African types have South African Territories (SAT)1, SAT2, and SAT3 that are prevalent in Africa. Especially SAT2 have spread to Arabian Peninsula and the Palestinian Autonomous Territories. Of these viruses, the incidence of SAT2 is the highest. It is important to prepare for the spread of the virus to other continents, even though most FMD viruses are bovine-derived. In particular, due to the high breeding density of pigs in Asia, more attention is usually paid to the immunity and protection of pigs than cattle. For this reason, this study investigated the immunity and protection of pigs against the SAT viruses. METHODS: Specific vaccines were developed for SAT1, SAT2, and SAT3 serotypes. These vaccine viruses were designed to be distinguished from the wild-type strain. An immunogenicity test was conducted using these vaccines in both cattle (n = 5/group) and pigs (n = 20/group). RESULTS: High virus-neutralizing titer of antibodies (> 1:100) was induced in only 2 weeks after the immunization of cattle with the individual vaccine for SAT1, SAT2 or SAT3, and a clear immune response was induced after the second immunization in pigs. When the vaccinated pigs (n = 4-5/group) were challenged by the homologous wild-type virus strain 4 weeks after immunization, all the pigs were protected from the challenge. CONCLUSIONS: This study confirmed that these vaccines can be used against SAT1, SAT2, and SAT3 viruses in cattle and pigs. The vaccine strains developed in this study are expected to be used as vaccines that can protect against FMD in the event of a future FMD outbreak in pigs in consideration of the situation in Asia.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/prevenção & controle , Vírus da Febre Aftosa/classificação , Sorogrupo , Suínos , Resultado do Tratamento , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Marcadoras/administração & dosagem , Vacinas Marcadoras/imunologia
20.
Front Immunol ; 10: 2509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736952

RESUMO

Conventional foot-and-mouth disease (FMD) vaccines exhibit several limitations, such as the slow induction of antibodies, short-term persistence of antibody titers, as well as low vaccine efficacy and safety, in pigs. Despite the importance of cellular immune response in host defense at the early stages of foot-and-mouth disease virus (FMDV) infection, most FMD vaccines focus on humoral immune response. Antibody response alone is insufficient to provide full protection against FMDV infection; cellular immunity is also required. Therefore, it is necessary to design a strategy for developing a novel FMD vaccine that induces a more potent, cellular immune response and a long-lasting humoral immune response that is also safe. Previously, we demonstrated the potential of various pattern recognition receptor (PRR) ligands and cytokines as adjuvants for the FMD vaccine. Based on these results, we investigated PRR ligands and cytokines adjuvant-mediated memory response in mice. Additionally, we also investigated cellular immune response in peripheral blood mononuclear cells (PBMCs) isolated from cattle and pigs. We further evaluated target-specific adjuvants, including Mincle, STING, TLR-7/8, and Dectin-1/2 ligand, for their role in generating ligand-mediated and long-lasting memory responses in cattle and pigs. The combination of Mincle and STING-stimulating ligands, such as trehalose-6, 6'dibehenate (TDB), and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), induced high levels of antigen-specific and virus-neutralizing antibody titers at the early stages of vaccination and maintained a long-lasting immune memory response in pigs. These findings are expected to provide important clues for the development of a robust FMD vaccine that stimulates both cellular and humoral immune responses, which would elicit a long-lasting, effective immune response, and address the limitations seen in the current FMD vaccine.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Febre Aftosa/metabolismo , Imunidade Celular , Memória Imunológica , Proteínas de Membrana/metabolismo , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Biomarcadores , Bovinos , Proliferação de Células , Citocinas/metabolismo , Febre Aftosa/virologia , Imunofenotipagem , Camundongos , Suínos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...